
To Promote the Progress of Science and Useful Arts

The Director
of the United States Patent and Trademark Office has received

an application for a patent for a new and useful invention. The title
and description of the invention are enclosed. The requirements
of law have been complied with, and it has been determined that

a patent on the invention shall be granted under the law.

Therefore, this United States

grants to the person(s) having title to this patent the right to exclude others from making,
using, offering for sale, or selling the invention throughout the United States of America or
importing the invention into the United States of America, and if the invention is a process,
of the right to exclude others from using, offering for sale or selling throughout the United
States of America, products made by that process, for the term set forth in 35 U.S.C. 154(a)(2)
or (c)(1), subject to the payment of maintenance fees as provided by 35 U.S.C. 41(b). See the
Maintenance Fee Notice on the inside of the cover.

Director of the United States Patent and Trademark Office

Maintenance Fee Notice
If the application for this patent was filed on or after December 12, 1980, maintenance fees
are due three years and six months, seven years and six months, and eleven years and six
months after the date of this grant, or within a grace period of six months thereafter upon
payment of a surcharge as provided by law. The amount, number and timing of the mainte-
nance fees required may be changed by law or regulation. Unless payment of the applicable
maintenance fee is received in the United States Patent and Trademark Office on or before
the date the fee is due or within a grace period of six months thereafter, the patent will expire
as of the end of such grace period.

Patent Term Notice
If the application for this patent was filed on or after June 8, 1995, the term of this patent
begins on the date on which this patent issues and ends twenty years from the filing date of
the application or, if the application contains a specific reference to an earlier filed applica-
tion or applications under 35 U.S.C. 120, 121, 365(c), or 386(c), twenty years from the filing date
of the earliest such application (“the twenty-year term”), subject to the payment of mainte-
nance fees as provided by 35 U.S.C. 41(b), and any extension as provided by 35 U.S.C. 154(b) or
156 or any disclaimer under 35 U.S.C. 253.

If this application was filed prior to June 8, 1995, the term of this patent begins on the date
on which this patent issues and ends on the later of seventeen years from the date of the
grant of this patent or the twenty-year term set forth above for patents resulting from appli-
cations filed on or after June 8, 1995, subject to the payment of maintenance fees as provided
by 35 U.S.C. 41(b) and any extension as provided by 35 U.S.C. 156 or any disclaimer under
35 U.S.C. 253.

Form PTO-377C (Rev 09/17)

(54) DATA COMPRESSION VIA BINARY
SUBSTITUTION

(71) Applicant: Anthony Ben Benavides, New Market,
MD (US)

(72) Inventor: Anthony Ben Benavides, New Market,
MD (US)

(73) Assignee: Anthony Benavides, New Market, MD
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 18/471,178

(22) Filed: Sep. 20, 2023

(65) Prior Publication Data

US 2024/0088910 A1 Mar. 14, 2024

Related U.S. Application Data

(63) Continuation of application No. 15/731,813, filed on
Aug. 7, 2017, now abandoned.

(60) Provisional application No. 62/495,056, filed on Sep.
1, 2016.

(51) Int. Cl.
H03M 7/40 (2006.01)
H03M 7/04 (2006.01)
H03M 7/30 (2006.01)

(52) U.S. Cl.
CPC H03M 7/04 (2013.01); H03M 7/30

(2013.01); H03M 7/55 (2013.01)

(58) Field of Classification Search
CPC H03M 7/04; H03M 7/30; H03M 7/55
USPC .. 341/67
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2009/0234642 A1 * 9/2009 Mittal H03M 7/30
704/201

* cited by examiner

Primary Examiner — Jean B Jeanglaude

(57) ABSTRACT

Operations include obtaining a binary source data set and
determining a decimal value that represents the source data
set. In addition, the operations include determining a Kinetic
Data Primer (KDP) that represents the decimal value. The
KDP may include a mathematical expression that represents
the decimal value. Further, the operations may include
storing the KDP as a compressed version of the source data
set.

9 Claims, 3 Drawing Sheets

US012136933B2

(12) United States Patent (10) Patent No.: US 12,136,933 B2
Benavides (45) Date of Patent: Nov. 5, 2024

U.S. Patent Nov. 5, 2024 Sheet 1 of 3 US 12,136,933 B2

U.S. Patent Nov. 5, 2024 Sheet 2 of 3 US 12,136,933 B2

U.S. Patent Nov. 5, 2024 Sheet 3 of 3 US 12,136,933 B2

DATA COMPRESSION VIA BINARY

SUBSTITUTION

CROSS-REFERENCE TO RELATED

APPLICATIONS

This application claims priority to U.S. Application Ser.

No. 15/731,813 filed Aug. 7, 2017, which claims priority to

and the benefit of the U.S. Provisional Application No. U.S.
62/495,056, both of which are incorporated herein by ref-
erence in their entireties.

BACKGROUND

Since the advent of data compression science, there have
been countless technologies, strategies, and novel tech-
niques for compressing data that, regardless of their
intended source application, can be categorized as either
“lossless” or “lossy” techniques. LOSSY data compression
techniques utilize many different strategies to create smaller
output files by discarding (losing) a quantifiable amount of
material information contained in the original source data.
Conversely, LOSSLESS data compression is a class of data
compression techniques and specific algorithms that allow
all the original source data to be perfectly reconstructed
from the compressed data. Lossless compression is used in
cases where it is imperative that the original source data and
the decompressed output data be identical. Typical examples
of source data where maintaining data integrity would be
preferable are software programs, text documents, and other
machine-executable source code.

SUMMARY

Embodiments of the present disclosure relate to opera-
tions including obtaining a binary source data set and
determining a decimal value that represents the source data
set. In addition, the operations include determining a Kinetic
Data Primer (KDP) that represents the decimal value. The
KDP may include a mathematical expression that represents
the decimal value. Further, the operations may include
storing the KDP as a compressed version of the source data
set.

BRIEF DESCRIPTION OF THE DRAWINGS

The present systems and methods for yield scenario
encoding for autonomous systems are described in detail
below with reference to the attached drawing figures,
wherein:

FIG. 1 illustrates an example method for compressing
data, according to one or more embodiments of the present
disclosure;

FIG. 2 illustrates an example method for decompressing
data, according to one or more embodiments of the present
disclosure;

FIG. 3 illustrates an example source data set, according to
one or more embodiments of the present disclosure; and;

FIG. 4 illustrates another example source data set, accord-
ing to one or more embodiments of the present disclosure.

DETAILED DESCRIPTION

In the modern digital world, millions and billions of
source bits are assembled to create most commonly used
data sets like software programs, multimedia files, games,
and digital communication signals. To increase the utility of

digital data, there have been many innovations in the art of
data compression that are based upon as many different
strategies, frameworks, and methodologies as there are
hardware and software systems that utilize such data. Most
data compression techniques are based upon condensing
source data by deleting a material amount of information or
by substituting source data for an alternative symbolic
representation.

Compressing data streams by calculating the value of its
consecutive bits produces sums that can often be millions of
digits in length. This is because according to the mathemati-
cal nature of adding the individual bits of an arbitrary-length
binary data set, the numerical value of any given bit in a
stream is exactly double the magnitude of the bit that
directly precedes its position, and exactly one-half the
magnitude of the bit that follows it.

Computers perform mathematical calculations by com-
bining the logical operations performed by its logic gates to
compute the necessary additions, subtractions, multiplica-
tions, etc., and arrive at a precise answer. The sequence of
logical operations used to perform a particular calculation or
specific predetermined functions are called algorithms. If
computational resources are not a concern, calculating the
numerical value of the assembled bits in a source data set
and representing the combined sum in whole decimal value
is trivial from an algorithmic perspective. Successively
adding a data stream’s bits that are initialized to zero (0)
followed by the non-negative integer one (+1) up to N (if
any) will compute { 0, 1, 1+N . . . N} , provided that the
necessary computing functions do not exceed the limits of
the available CPU hardware and the output decimal repre-
sentation fits into an allocated memory source.

To explain how this process would apply to a real world
paradigm, we will examine one of the most commonly
encountered binary data sets of the modern computer age:
the digital music file. Given that the average 4-minute music
file (.MP3 song, for instance) is approximately 4.0 Mega-
bytes (“MB”) in size, this means that there are 4,194,304
bytes in the file. A byte is defined as a unit of computer
information or extensible data storage capacity that consists
of a discrete group of 8 bits and that is used especially to
represent an alphanumeric character (i.e.: letters, numbers,
symbols, etc.). Because a byte is made up of 8 bits, this
means that a 4.0 MB music file contains 33,554,432 indi-
vidually-assembled bits. When these 33 million bits are
consecutively added together, this will mathematically pro-
duce an equivalent decimal sum approximately 10 million
digits long.

In the realm of computer science, when these metrics are
considered in terms of data compression, consecutively
adding a data stream’s bits in order to calculate the numeri-
cal value of the entire stream does not, in itself, produce any
compression of the original size of the stream. Statistically
speaking, a zero net compression ratio (1:1) is produced as
a result of this basic process. In fact, in certain instances,
negative compression ratios can result from converting
binary values into their equivalent decimal values. The
fundamental logic of the SBS scheme is to realize superior
and absolutely lossless levels of compression by using
dynamic mathematical utilities to express a data stream’s
combined decimal sum in its most elegant, precise, and
highly-abbreviated form. By using robust math tools such as
square and cube roots, high-powered exponentials, factori-
als, and other algebraic and calculus functions, the informa-
tion contained within entire data streams, indeed oceans of
data, can be flawlessly substituted for extremely compact
and mathematically-precise “Kinetic Data Primers”, (or

US 12,136,933 B2

1 2

5

10

15

20

25

30

35

40

45

50

55

60

65

“KDPs”). A KDP is, essentially, a basic set of mathematical

instructions that, upon algorithmic calculation, is designed

to yield precise decimal sums that can be easily converted

into a linear sequence of equivalent-value binary bits.

To illustrate how calculating a data set’s bits can produce

extremely large decimal numbers, and how such numbers

can be simply expressed as mathematically-perfect KDPs,

the following illustration is a graphical interpretation of a

relatively small 64-byte data set. For perspective, given that

the size of a common text message (i.e.: a “tweet” on the

Twitter service) is limited to 140 characters, which would

require 140 bytes of uncompressed data to represent those

characters, 64 bytes is roughly half that size:

For instance, below is an example binary data set that may

be the same size as a 64-character text message:

1110101111010000111010111100001111010100010110

0110011011000100010100110101101 011010101011

0101010110101011001101011101010101011110110

1010101101011111011100 101001111011110010111

1011010111010110001110100010100011010110101

0101010101100 11010101010101010101011110101
0101011111101010101010010101010101100110111
01011 01001011010110101010101010101100110
101001010101111010101010010110101010010111
110110101010101010101010101010101010100101
01010101001010111110101101010101011 101010101
0010101010101111111000001010101001010111

When the numerical values of these bits are consecutively
added together (as described in further detail in the present
disclosure), they produce the following decimal sum:

13,407,807,929,942,597,099,574,024,998,205,846,127,
479,365,820,592,393,377,723,561,443,7 21,764,030,
073,546,976,801,874,298,166,903,427,690,031,858,
186,486,050,853,753,882,811,9 46,569,946, 433,649,
006,084,096

The above-decimal sum may be represented in a Scalable
Binary Substitution (“SBS”) format, can be precisely
expressed as a Kinetic Data Primer (“KDP”) as elegant and
compact as: 2512 (Two-to-the-Five Hundred and twelfth-
power).

Note that the example given with respect to the specific
integer provided above is such that this specific integer
represents the precise decimal sum produced by succes-
sively adding all 512 bits of a 64-byte binary data set,
providing, of course, that each bit in the set yielded its
maximum possible numerical value relative to its position
within the set (e.g., if every bit in the data set were calculated
as binary ones (1s)). Demonstrating the functionality of the
SBS-KDP methodology by reducing a 155-digit integer into
a numerically-equivalent (exponentially-powered) 5-charac-
ter KDP is used herein only to show the maximum math-
ematically-achievable algorithmic efficiency of the SBS
scheme by exploiting the structural stability of binary arith-
metic to manipulate binary source data sets in proprietary
ways.

In the case of the 4.0 MB music file mentioned herein, the
10 million-digit-long decimal number that is produced by
successively adding its 33 million source bits can be pro-
foundly reduced by expressing its numerical sum in a more
elegant, yet mathematically-precise way. For example, the
numerical value of a 10 million-digit-long decimal number
can be accurately expressed as a KDP as compactly-written
as:

“1560000ˆ1560000”
(One million five hundred and sixty-thousand-to-the-One

million five hundred sixty-thousandth-power)

When a Kinetic Data Primer of this magnitude is calcu-
lated, it will produce a decimal sum approximately 10
million digits in length. This 10 million-digit-long decimal
number can then, in turn, be converted back into its precise
binary equivalent which, in the methodology of the SBS
substitution scheme, would serve to perfectly reconstruct the
digital footprint (i.e.: bit type and exact position) of all 33
million bits in the original 4.0 MB source data set.

The ultimate utility of the SBS scheme can be found in the
sheer economy of data used to substitute the exact numerical
value of astronomically-large source-calculated sums:
Encoding an arbitrary mathematical expression such as
“1560000ˆ1560000” into a machine-readable format would
only require 50 bits of data (less than 7 bytes). In particular,
the Kinetic Data Primer size variable of seven (7) bytes
represents the 50 bits of data needed to encode the math-
ematical expression “1560000ˆ1560000” into its KDP for-
mat. These 7 KDP bytes include the 21 bits of data needed
to represent both the base decimal magnitude of (1,560,000)
and its exponential power magnitude of (1,560,0001560000),
plus the 8 bits of data needed to represent the ASCII symbol
(ˆ) used to signify a base number’s exponential value. The 50
bits of data needed to express the KDP “1560000ˆ1560000”,
for example, can be encoded within 7 bytes because, at
8-bits-per-byte, the maximum data capacity of 7 bytes is 56
bits. This 7-byte KDP size variable excludes any proprietary
KDP file data including, for instance, any SBS-KDP file ID,
KDP codec decimal library markers, alphanumeric hash tags
(MD5, etc.), IP security/encryption codes, forensic authen-
tication data (DMCA, etc.), KDP mantissa-correction codes,
and any other dynamic KDP payload data. When these
extrinsic SBS-KDP file data are embedded into a KDP in its
perfect format, this could increase the KDP’s output size
from its 7-byte “Quantum Footprint” to a maximum scalable
payload capacity of 32 bytes (0.03 KB). When a KDP is
scaled to its maximum payload size format of 32 bytes, this
will necessarily decrease its output compression ratio from
599,186:1 to 131,072:1, which is the net compression yield
of 4,194,304 bytes reduced to 7 bytes (0.007 KB) and 32
bytes (0.03 KB), respectively

In general terms of data compression, encoding the binary
information contained in a 4,194,304-byte (4.0 MB) source
file into an SBS-KDP as infinitesimally compact as seven (7)
bytes would mathematically indicate a baseline output com-
pression ratio of 599,186:1, which is the net compression
yield of 4,194,304 bytes reduced to 7 bytes (0.007 KB). For
technical perspective, the current state-of-the-art in commer-
cial-grade audio media compression techniques only pro-
duce average output compression ratios of less than 100:1.
The SBS Algorithm

FIG. 1 illustrates an example method 100 that illustrates
specific functions of the SBS algorithm scheme. The method
100 may be performed by any suitable system, apparatus, or
device, such as a computing system. The method 100 relates
to performing data compression based on the SBS algorithm
scheme.

The method 100 may include a block 102, at which the
digital footprint of a Source Data Set (SDS) may be ana-
lyzed. At block 104, the numerical value representing the
SDS’s bits may be calculated (e.g., the decimal sum value of
the SDS bits may be calculated). At block 106, the decimal
value of the sum of the SDS may be produced. At block 108,
the decimal sum may be converted into a (compactly
expressed) KDP. At block 110, the KDP may be produced.

FIG. 2 illustrates an example method 200 that illustrates
specific functions of the SBS algorithm scheme. The method
200 may be performed by any suitable system, apparatus, or

US 12,136,933 B2

3 4

5

10

15

20

25

30

35

40

45

50

55

60

65

device, such as a computing system. The method 200 relates
to performing data decompression based on the SBS algo-
rithm scheme.

The method 200 may include a block 202, at which a
source KDP representing an SDS may be analyzed. At block
204, the numerical decimal value represented by the KDP
may be calculated. At block 206, the decimal value repre-
sented by the KDP (e.g., the decimal value of the sum of the
SDS) may be produced. At block 208, the decimal sum may
be converted into its binary equivalent (e.g., the binary
values of the bits of the SDS may be determined based on
the decimal sum). At block 210, a copy of the SDS may be
produced as the determined binary equivalent.
The SBS Algorithm Scheme

An example illustration of the substitution methodology
of the SBS algorithm scheme (e.g., the source bits-to-kinetic
data primer) is as follows below with respect to an example
binary source data set 300 (SDS 300) illustrated in FIG. 3A.

The SDS 300 of FIG. 3 includes 80 bits. Eighty bits (at 8
bits-per-byte) equals 10 bytes. Because a bit can only exist
in two states, a zero (0) or a one (1), for the purposes of
demonstrating the functionality of the SBS algorithm, the
bits in the SDS have been randomly arranged. The numerical
value of any given bit in a data set is determined by its type
(i.e.: 0 or 1) and its exact position within the set. When
calculating the numerical value of consecutive bits in any
finite-length data set, it is important to note that only bits
with a binary value of “1” produce any numerical value and
their equivalent decimal values are determined by their exact
position within the set. Conversely, if any bit in a finite-
length data set has a binary value of “0”, it will not produce
any numerical value and, therefore, its equivalent decimal
value is set at “0” regardless of its position within the data
set. Additionally, since the numerical value of the first bit
(bit-1) of any finite-length data set will always be initialized
to zero (0), it will only produce a corresponding decimal
value of one (+1) if it is a 1-bit. All subsequent bits in the
data set, if any, will produce a corresponding decimal value
exactly double (2×) the value of the bit that directly precedes
its position. The potential decimal value of the bits in any
finite-length data set of “N” bits is determined as follows,
where the number in the exponent represents the placement
of the corresponding bit starting with a placement value of
“0” indicating the placement of the first bit:

{ 20(1), 21(2), 22(4), 23(8), 24(16), 25(32), 26(64),

27(128), 28(256), 29(512), . . . 2N−1}

As a further example, TABLE 1 below illustrates deter-
mined decimal values (bit values) for each of the bits of the
SDS 300 of FIG. 3. TABLE 1 also includes a decimal sum
value that may be obtained by summing the determined bit
values for the SDS 300.

Bit Placement Binary

Number Value Value Decimal Value

1 0 1 1

2 1 1 2

3 2 1 4

4 3 1 8

5 4 1 16

6 5 1 32

7 6 1 64

8 7 1 128

9 8 0 0

10 9 0 0

11 10 0 0

12 11 0 0

-continued

Bit Placement Binary

Number Value Value Decimal Value

13 12 0 0

14 13 0 0

15 14 1 16,384

16 15 0 0

17 16 0 0

18 17 0 0

19 18 0 0

20 19 1 524,288

21 20 1 1,048,576

22 21 0 0

23 22 0 0

24 23 0 0

25 24 0 0

26 25 0 0

27 26 0 0

28 27 0 0

29 28 0 0

30 29 0 0

31 30 0 0

32 31 0 0

33 32 0 0

34 33 1 8,589,934,592

35 34 0 0

36 35 1 34,359,738,368

37 36 1 68,719,476,736

38 37 1 137,438,953,472

39 38 1 274,877,906,944

40 39 1 549,755,813,888

41 40 0 0

42 41 0 0

43 42 1 4,398,046,511,104

44 43 1 8,796,093,022,208

45 44 1 17,592,186,044,416

46 45 1 35,184,372,088,832

47 46 0 0

48 47 0 0

49 48 1 281,474,976,710,656

50 49 0 0

51 50 1 1,125,899,906,842,624

52 51 0 0

53 52 1 4,503,599,627,370,496

54 53 0 0

55 54 0 0

56 55 0 0

57 56 0 0

58 57 1 144,115,188,075,855,872

59 58 0 0

60 59 1 576,460,752,303,423,488

61 60 1 1,152,921,504,606,846,976

62 61 0 0

63 62 1 4,611,686,018,427,387,904

64 63 1 9,223,372,036,854,775,808

65 64 0 0

66 65 0 0

67 66 1 73,786,976,294,838,206,464

68 67 1 147,573,952,589,676,412,928

69 68 1 295,147,905,179,352,825,856

70 69 1 590,295,810,358,705,651,712

71 70 0 0

72 71 0 0

73 72 1 4,722,366,482,869,645,213,696

74 73 0 0

75 74 0 0

76 75 0 0

77 76 1 75,557,863,725,914,323,419,136

78 77 0 0

79 78 0 0

80 79 0 0

Total 81,402,749,386,839,761,113,321

As illustrated above, consecutively adding the bit values
of the SDS 300 produces a decimal sum of 8.140274939e22.
This means that there are 23 digits in the output number.
When this sum is expressed as a whole number, its precise
value is: “81,402,749,386,839,761,113,321.” To realize a
measurable level of data compression, the decimal sum of

US 12,136,933 B2

5 6

5

10

15

20

25

30

35

40

45

50

55

60

65

the 80-bit SDS can be synthesized into an alternate math-
ematical expression such as: “12111” (or “one hundred
twenty-one-to-the-eleventh-power”). This numerical
expression can then be encoded in a machine-readable KDP
written as:

“121ˆ11”
The data needed to encode the mathematical expression

“121ˆ11” is only 24 bits (3 bytes). Specifically, the decimal
values (121) and (11) can each be encoded within two 8-bit
groups because, in the binary system, the total range of
decimal values that can be represented in each group is 0
through 255. The ASCII symbol (ˆ) can also be encoded
using 1 byte of data.

The above example given with respect to the SDS 300
illustrates the methodology in which the bits of an SDS can
be calculated into an equivalent decimal value and further
synthesized into an alternate numerical expression which, in
the final stage of the SBS scheme, is used as the input data
for a source’s KDP. In the above SDS-to-KDP demonstra-
tion, the decimal sum that resulted from calculating the
SDS’s bits was precise enough to be synthesized into a
single exponential expression of (“121ˆ11”) without any
collateral decimal remainder. Because there are an infinite
number of equivalent numerical values that can be calcu-
lated from the analysis of binary data sets, it is a mathemati-
cal certainty that not every sum will be without any collat-
eral decimal remainder resulting from such calculation.
Therefore, in the following SDS-to-KDP demonstration, we
will show how an SDS 400 of FIG. 4 with an “imperfect”
decimal sum can be synthesized into a “perfect” KDP (e.g.,
a KDP that produces the decimal sum exactly) using mul-
tiple primers.

When the bits in the SDS 400 are consecutively added
together (e.g., such as in the manner described above with
respect to the SDS 300 of FIG. 3), the decimal sum that is
produced is: “2,432,902,008,176,640,000.” When this deci-
mal sum is initially calculated to determine if it can be
synthesized into a “neat” high-powered exponential expres-
sion of equivalent value, or, in other words, an expression
without any collateral decimal remainder, it is found to be
numerically “imperfect.” Whenever an imperfect source
sum is produced, the simplest method of calculating its
most-approximate base primer is to subtract a binary mag-
nitude variable that is found to be the closest numerical
approximation to the output decimal sum of the SDS. In
other words, since the output sum of the SDS 400 is
(2.432902008e18), the closest equivalent decimal value that
can be expressed as a binary magnitude variable would be
(261), which, when calculated, produces a decimal value of
(2.305843009e18). In order to calculate the next viable
(2nd-order) sub-primer, the numerical disparity between the
SDS sum and the newly-obtained base primer value must
first be ascertained. When these two numbers are calculated
by subtracting the base primer value from the sum of the
SDS, the remaining decimal value is (1.27058999e17).
When this decimal remainder is calculated to determine
whether it can be synthesized into a “neat” equivalent
expression, its most-approximate equivalent sum is found to
produce a mantissa (collateral decimals to the right of a
logarithm).

Whenever any sub-primer is found to have a mantissa, the
simplest method of determining whether it can be used as a
viable output sub-primer, the closest square/cube root of the
number is calculated to find the most-approximate non-
negative integer with the smallest mantissa (i.e., the lowest
number of collateral decimals). In the case of the decimal
remainder (1.27058999e17), the most viable sub-primer

variable is found by calculating its first cube root (@), which
produces a decimal value of (502,730.3947). This sub-
primer output variable of (502,730.3947 3) can be used as a
viable 2nd-order KDP number, because, when it is calculated
into its whole decimal form and compared for accuracy
against its source variable, it doesn’t produce any collateral
decimals. Therefore, the two KDP numbers that can be
integrated to produce a perfect output KDP number are
detailed as follows:

1. Precise calculated decimal sum of 2,432,902,008,176,640,000

SDS:

2. MINUS base primer binary 2,305,843,009,213,693,952

magnitude value of (261):

3. MINUS 2nd-order sub-primer value 127,058,998,962,946,048

of (502,730.39473):

Decimal Remainder (if any): ZERO

In the final analysis, the “perfect” multi-variable KDP for
the SDS 400 may be expressed as follows:

“2ˆ61+502730.3947ˆ3”
When this multi-variable output KDP number is calcu-

lated into a single whole number, it produces a decimal value
of (2,432,902,008,176,640,000), which is precisely equiva-
lent to the calculated decimal sum of the SDS 400. The data
needed to encode the mathematical expression “2ˆ61+
502730.3947ˆ3” as a perfect KDP number is 73 bits (less
than 10 bytes). These 73 bits are broken down as follows:

2 bits to represent the base decimal number (2)
8 bits to represent the ASCII symbol (ˆ) to signify an

exponential-power
6 bits to represent the exponential-power decimal mag-

nitude of (61)
8 bits to represent the ASCII symbol (+) to signify an

addition mathematical operation
19 bits to represent the whole decimal number (502,730)
8 bits to represent the ASCII symbol (.) to signify a

decimal point (or a period)
12 bits to represent the decimal magnitude of the mantissa

(3947)
8 bits to represent the ASCII symbol (ˆ) to signify an

exponential-power
2 bits to represent the exponential-power decimal mag-

nitude of (3)
The 73 total bits of data needed to express the above

perfect KDP can be encoded within 10 bytes because, at
8-bits-per-byte, the maximum data capacity of 10 bytes is 80
bits. In terms of data compression, encoding the binary
information contained in an 8-byte SDS into a 10-byte
multi-variable KDP number would mathematically indicate
a negative net output compression ratio of 0.80:1, which is
the net compression yield of 8 bytes increased to 10 bytes
(0.0097 KB).

This particular example of a multi-primer KDP is being
included herein to demonstrate that it is, in fact, mathemati-
cally-possible to produce a negative net compression yield
from the application of the SBS scheme to an arbitrary-
length SDS. Although it is highly unlikely that an SDS as
small as 8 bytes would have any viable human utility beyond
machine-readable-only command prompts and predeter-
mined programming functions, an 8-byte SDS was specifi-
cally chosen because it approximates the algorithmic/sub-
stitution threshold limit that determines whether a positive
or negative output compression yield is produced by the
application of the SBS scheme. It is important to emphasize
the fact that, as prior algorithm examples demonstrate, the
SBS scheme uses multi-input data fields to encode an SDS

US 12,136,933 B2

7 8

5

10

15

20

25

30

35

40

45

50

55

60

65

into an output KDP whose range of unique numerical input

data are virtually limitless. Whenever the application of the

SBS scheme produces a negative net compression yield, it is

mathematically-possible to synthesize other multi-primer

alternative variables that can produce more precise decimal
sums which, upon further calculation, can have a material
effect on whether the final KDP synthesis yields a positive
or negative net compression ratio.
Experimental Results and Discussions

The algorithm structure of the SBS-KDP scheme uses
dual binary input data fields to encode up to 64 bits (8 bytes)
of scalable KDP source information per field. The precise
range of numerical values that be encoded within each 64-bit
“number field” is 0 through 18,446,744,073,709,551,615
(18 Quintillion, or 264−1), which is used to represent the
corresponding range of decimal values produced by calcu-
lating the bits of a source data set (“SDS”). The two number
fields are functionally partitioned by a third input data
“character field” used to represent dynamic mathematical
functions such as exponential-powers (xˆ), square and cube
roots (√x) (@x), factorials (x!), or any other math operation
(+, −, ÷, *, etc.), for instance.

When both input number fields are coded to represent the
maximum decimal value of their 64-bit data capacities used
in tandem with the input character field to express a dynamic
mathematical operation, a high-powered exponential value,
for example, the combined tri-field input would be:

“18446744073709551615ˆ18446744073709551615”
The data needed to represent this specific maximum-value

KDP number is only 136 bits (17 bytes), whereas the amount
of source data that can be encoded is 2.3 sextillion bytes (2.3
Zettabytes, or “ZB”) with 100.000% lossless data retention
efficiency. If no other extrinsic SBS-KDP file data are
needed to produce a perfect ICDP source number, then these
17-byte-scheme metrics would mathematically indicate an
output compression ratio of 138 EB:0.017 KB, which is the
net compression yield of a 2.3 ZB SDS reduced to 17 bytes
(0.017 KB).

As previously explained, whenever any extrinsic SBS-
KDP file data are embedded into a perfect KDP source
number, the output size of the KDP could increase from its
17-byte “Quantum Footprint” to its maximum scalable pay-
load capacity of 32 bytes (0.032 KB). Including any such
extrinsic KDP file data would necessarily decrease the
output compression ratio from 139 EB:0.017 KB to 73
EB:0.031 KB, which is the net compression yield of a 2.3
ZB SDS reduced to 17 bytes and 32 bytes, respectively.

As used herein, a recitation of “and/or” with respect to
two or more elements should be interpreted to mean only
one element, or a combination of elements. For example,
“element A, element B, and/or element C” may include only
element A, only element B, only element C, element A and
element B, element A and element C, element B and element
C, or elements A, B, and C. In addition, “at least one of
element A or element B” may include at least one of element
A, at least one of element B, or at least one of element A and
at least one of element B. Further, “at least one of element
A and element B” may include at least one of element A, at
least one of element B, or at least one of element A and at
least one of element B. Additionally, use of the term “based
on” should not be interpreted as “only based on” or “based
only on.” Rather, a first element being “based on” a second

element includes instances in which the first element is
based on the second element alone or on the second element
and one or more additional elements.

The subject matter of the present disclosure is described
with specificity herein to meet statutory requirements. How-
ever, the description itself is not intended to limit the scope
of this disclosure. Rather, the inventor has contemplated that
the claimed subject matter might also be embodied in other
ways, to include different steps or combinations of steps
similar to the ones described in this document, in conjunc-
tion with other present or future technologies. Moreover,
although the terms “step” and/or “block” may be used herein
to connote different elements of methods employed, the
terms should not be interpreted as implying any particular
order among or between various steps herein disclosed
unless and except when the order of individual steps is
explicitly described.

What is claimed is:
1. A method of data compression comprising:
obtaining a binary source data set;
determining a decimal value that represents the source

data set;
determining a Kinetic Data Primer (KDP) that represents

the decimal value, the KDP including a mathematical
expression that represents the decimal value; and

storing the KDP as a compressed version of the source
data set.

2. The method of claim 1, wherein the decimal value
includes a summation that is determined based on binary
values of individual bits included in the source data set.

3. The method of claim 2, wherein bits having binary
values of “0” are given respective decimal bit values of “0”
with respect to determining the summation.

4. The method of claim 2, wherein bits having binary
values of “1” are given respective decimal bit values with
respect to determining the summation that are based on
placement of such bits in the binary source data set.

5. The method of claim 2, wherein:
the source data set includes “N” bits with bit placement

values from “0” to “N-1”; and
a value used in the summation for an “nth” bit of the

source data with a placement value of “n-1” is “2n-1”.
6. The method of claim 4, wherein the value used in the

summation for the “nth” bit is “2n-1” in response to the “nth”
bit being a binary “1”.

7. The method of claim 1, wherein the KDP includes one
or more representations of one or more mathematical opera-
tors.

8. The method of claim 7, wherein the one or more
mathematical operators include one or more of: an addition
symbol, a subtraction symbol, an exponent symbol, a divi-
sion symbol, a multiplication symbol, a parenthesis symbol,
a factorial symbol, or a root symbol.

9. The method of claim 1, further comprising:
obtaining the KDP as the compressed version of the

source data set;
determining the decimal value based on the KDP;
determining bit values of the source data set based on

decimal value; and
reproducing the source data set based on the determined

bit values.

∗ ∗ ∗ ∗ ∗

US 12,136,933 B2

9 10

5

10

15

20

25

30

35

40

45

50

55

60

	E_Grant_Covers_All_508 5
	E_Grant_Covers_All_508 6

		USPTO Director
	2024-11-04T09:46:53-0500
	United States Patent and Trademark Office
	United States Patent and Trademark Office
	Digitally Sealed

